Physical IO on Linux

I posted a fair amount of stuff on how Oracle is generating IOs, and especially large IOs, meaning more than one Oracle block, so > 8KB. This is typically what is happening when the Oracle database is executing a row source which does a full segment scan. Let’s start off with a quiz: what you think Oracle is the maximum IO size the Oracle engine is capable of requesting of the Operating System (so the IO size as can be seen at the SCI (system call interface) layer? If you made up your answer, remember it, and read on!

The real intention of this blogpost is to describe what is going on in the Oracle database kernel, but also what is being done in the Linux kernel. Being a performance specialised Oracle DBA means you have to understand what the operating system does. I often see that it’s of the utmost importance to understand how an IO ends up as a request at the NAS or SAN head, so you understand what a storage admin is talking about.

Many people (including myself in the past) would state that the maximum IO size on Linux is 1MB. For the Linux 2.6 kernel and higher this statement is incorrect because there is no such thing as a single maximum IO size on Linux. There used to be one in the Linux 2.4 era, which was set with the maxphys parameter, but that time is long gone. In order to find out what it is now, let’s test and see!

First let’s get a Linux system and a big table!
The system I got is a VMWare Fusion VM, running Linux 3.8.13-44.1.5.el6uek.x86_64 (UEK3) on Oracle Linux 6u6. On top of that I am using the Oracle database and grid infrastructure version 12.1.0.2. This system is using udev for providing disk access (as opposed to asmlib)
The redundancy mode of ASM is external, although for reading (what I will be covering) this doesn’t matter.

Now let’s get a normal database session, and use a combination of sql_trace with waits (10046/8) and strace to see how the Oracle database interfaces with the kernel. Please mind I’ve prepared a heap table with no indexes on it, so a count(*) on it always will result in a full table scan. Also, the buffercache is sized small enough (or the table is created large enough, it depends on how you look at it) to have the session make the decision to do a direct path read, instead of a buffered read. If you don’t know what that means: please search this blog on direct path reads, or even better, download my presentation ‘about multiblock reads’.

The direct path read decision is visible via the ‘direct path read’ wait event. If you get a full table scan operation and see ‘db file scattered read’ waits, you are doing a buffered scan.

In the most cases, you will get a maximum value of 1MB if possible, which seems to support the generally assumed 1MB maximum operating system induced IO size. Why? Well, because you probably set the DB_FILE_MULTIBLOCK_READ_COUNT parameter to 128, which means you have explicitly set the Oracle process not to do IO with a size more than 1MB (8192*128). In this blogpost, I explain that Oracle can request IOs bigger than 1MB.

In the blogpost series on extra huge database IOs, I show that Oracle can do huge (1MB+) IOs, but the physical request size (what Oracle actually requests at the SCI layer, visible with the pread/pwrite/io_submit/io_getevents functions) still is 1MB. This limit is imposed by the physical storage structure which the database uses with ASM, called allocation unit (often called ‘AU’). The default size of an allocation unit is 1MB. The allocation unit can be seen in both the database and the ASM instance with the following query:

SYS@+ASM AS SYSASM> select name, allocation_unit_size from v$asm_diskgroup;

NAME			       ALLOCATION_UNIT_SIZE
------------------------------ --------------------
DATA					    1048576

How about doing an unbuffered read on a filesystem? I’ve created a database on an (XFS, but this doesn’t matter AFAIK) filesystem, and tried to set the maximum value to DB_FILE_MULTIBLOCK_READ_COUNT. I’ve done this by setting DB_FILE_MULTIBLOCK_READ_COUNT to 10000 (ten thousand), and then bounce the database to see what the number has become. In my case, the value became 4096. I think this is the limit for Oracle 12.1.0.2 on Linux x86_64, but love to hear if you have gotten different results:

I set 10000:

SYS@fv12102 AS SYSDBA> select name, value from v$spparameter where name like 'db_file_multiblock%';

NAME						   VALUE
-------------------------------------------------- ----------------------------------------------------------------------
db_file_multiblock_read_count			   10000

But Oracle limits this to 4096:

SYS@fv12102 AS SYSDBA> select name, value from v$parameter where name like 'db_file_multiblock%';

NAME						   VALUE
-------------------------------------------------- ----------------------------------------------------------------------
db_file_multiblock_read_count			   4096

Okay. Let’s start our investigation at that point: a database which is set up with a DB_FILE_MULTIBLOCK_READ_COUNT set to 4096, alias 32MB (with a block size of 8KB), and a table which got extents large enough to accommodate huge (32MB) IOs.

Fire up a session regular database session, and enable sql trace at level 8:

$ sqlplus ts/ts@//localhost/v11204
...
SQL> alter session set events 'sql_trace level 8';

Now start another session as root on the database server, and find the PID of the server process of the sqlplus process we just created above. Issue strace with verbose writing setting:

# strace -e write=all -e all -p PID
Process PID attached - interrupt to quit
read(14,

Okay, we are setup and ready to go, but there is one additional thing: the way direct path reads work, they would probably give little waits with fast IO capabilities. One way to get the waits back, is to limit the IO capabilities of the process. Doing so is documented in this article.

Now issue the full table scan on a large table in sqlplus while strace is attached:

SQL> select count(*) from bigtab;

Now take a peek at the strace output!
The output first shows IOs as we expect:

io_getevents(139717184229376, 1, 128, {{0x7f126dd3d780, 0x7f126dd3d780, 33554432, 0}}, {600, 0}) = 1
times(NULL)                             = 431386800
write(7, "\n*** 2014-11-24 13:09:28.028\n", 29) = 29
 | 00000  0a 2a 2a 2a 20 32 30 31  34 2d 31 31 2d 32 34 20  .*** 201 4-11-24  |
 | 00010  31 33 3a 30 39 3a 32 38  2e 30 32 38 0a           13:09:28 .028.    |
lseek(7, 0, SEEK_CUR)                   = 31181
write(7, "WAIT #139717129509840: nam='dire"..., 130) = 130
 | 00000  57 41 49 54 20 23 31 33  39 37 31 37 31 32 39 35  WAIT #13 97171295 |
 | 00010  30 39 38 34 30 3a 20 6e  61 6d 3d 27 64 69 72 65  09840: n am='dire |
 | 00020  63 74 20 70 61 74 68 20  72 65 61 64 27 20 65 6c  ct path  read' el |
 | 00030  61 3d 20 33 39 30 37 33  30 20 66 69 6c 65 20 6e  a= 39073 0 file n |
 | 00040  75 6d 62 65 72 3d 34 20  66 69 72 73 74 20 64 62  umber=4  first db |
 | 00050  61 3d 37 34 31 33 37 36  20 62 6c 6f 63 6b 20 63  a=741376  block c |
 | 00060  6e 74 3d 34 30 39 36 20  6f 62 6a 23 3d 32 30 34  nt=4096  obj#=204 |
 | 00070  37 34 20 74 69 6d 3d 31  39 32 30 30 37 31 30 31  74 tim=1 92007101 |
 | 00080  39 39                                             99                |

What is visible here, is first the reap of an I/O request (with asynchronous IO on Linux this is typically the io_getevents() call). If you take a close look at the arguments of the io_getevents() call (taken from the manpage of io_getevents):

int io_getevents(aio_context_t ctx_id, long min_nr, long nr, struct io_event *events, struct timespec *timeout);

And then focus on the struct io_event:

struct io_event {
         __u64           data;           /* the data field from the iocb */
         __u64           obj;            /* what iocb this event came from */
         __s64           res;            /* result code for this event */
         __s64           res2;           /* secondary result */
};

The above description is taken from the annotated Linux kernel source, as available here: http://lxr.free-electrons.com/source/include/uapi/linux/aio_abi.h#L58 I use this site for navigating the Linux kernel source. What is important, is that the third field (io_event.res) contains the size of the IO request. Having learned this, now look again in the io_getevents call. The size of the IO reaped above is 33554432, which is 33554432/1024/1024=32 MB. Yes, that’s a single IO of 32MB! Also, this is consistent with the wait line a little lower:

 | 00050  61 3d 37 34 31 33 37 36  20 62 6c 6f 63 6b 20 63  a=741376  block c |
 | 00060  6e 74 3d 34 30 39 36 20  6f 62 6a 23 3d 32 30 34  nt=4096  obj#=204 |

Block count = 4096 * 8192 (block size) = 33554432

So, I wonder what you thought was possible, the correct answer on my operating system (Linux x86_64) with Oracle 12.1.0.2 is 32MB. It turned out the big IOs in the ASM case were limited by the allocation unit size of 1MB.

The next thing I’ve wondered is how this matches with the maximum IO size of the disk devices as visible by the Operating System. You can request 32MB, but a normal SCSI disk doesn’t do 32MB IOs. Of course in my case the SCSI disk really is a VMWare virtual disk device.

Let’s keep the 32MB IO in mind, now dive from the top layer, the SCI (system call interface) where an IO enters the kernel to the bottom of the kernel from an IO perspective, to the block device. The block device settings are found in /sys/block/DEVICE/queue. The maximum IO size the device is capable of is found in max_hw_sectors_kb. This is in kilobytes, and read only (can’t change hardware, right?). In my case this is:

[root@bigmachine queue]# cat max_hw_sectors_kb
4096

My disk supports a maximum of 4M for an IO size! But this is not what is used, the actual setting is in max_sectors_kb:

[root@bigmachine queue]# cat max_sectors_kb
512

That’s half a megabyte!

So…we got (up to) 32MB sized IO requests coming in, and a device that is set to 512KB IOs. This means that somewhere between the SCI and the device, there is a mechanism to scatter the request size to the device’s maximum IO size, and once the IO requests are done, going back to gather the IO results to the original request.

There are a couple of layers in the Linux kernel through which the call travels (including common functions):

-SCI/system call interface: system_call, sys_io_submit…. (io_submit, do_io_submit, io_submit_one; these seem to be in the VFS layer)
-VFS/virtual filesystem: aio_run_iocb, do_aio_read, xfs_file_read_iter, generic_file_read_iter, xfs_vm_direct_IO, bio_*, kiocb_batch_refill
-Block layer: blk_finish_plug, blk_flush_plug_list, queue_unplugged, __blk_run_queue, blk_run_queue
-SCSI layer: scsi_*
-Device driver: mptspi_qcmd, mptscsih_qcmd, mpt_put_msg_frame

(note: there seems to be consensus the above mentioned layers exist, although there is different wording and different numbers by different sources. Also, there doesn’t seem to be a very clear description of what is done by which layer, and what typically defines a kernel layer. For some functions it is clear they belong to a certain layer (for example aio_run_iocb in Linux/fs/aio.c, bulk_finish_plug in Linux/block/blk-core.c, etc.), for some layers, like the SCI layer, it seems there isn’t a clear layer definition by looking at where the function is defined. Also please mind the SCSI layer is implemented as a driver, just like the actual device driver for the hardware. This is very understandable, but makes it a bit harder to see it in a layered way)

System Call Interface (SCI)
The request enters kernel space via the SCI. The function of the SCI is to elevate a process to system priority to perform a kernel mode task, like (but not limited to) doing I/O. The system call implementation on Linux makes use of a wrapper function in glibc, which executes the system call on behalf of the user systemcall request. The reason for mentioning this, is that sometimes the glibc wrapper “hides” the real system call, for example calling the semtimedop() function:

(gdb) break semtimedop
Breakpoint 1 at 0x3bb38eb090: file ../sysdeps/unix/syscall-template.S, line 82.
(gdb) c
Continuing.

Breakpoint 1, semtimedop () at ../sysdeps/unix/syscall-template.S:82
82	T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)

Above is a gdb (GNU debugger) session which attaches to an Oracle background process, which I know is sleeping in the system call semtimedop() when idle, A breakpoint is set on the semtimedop function, and the execution of the attached process is resumed. It then breaks on the function, showing the source code at which the break happened. Instead of showing the actual semtimedop function, it shows the pseudo function in glibc which wraps this system call. This hides the arguments of calling the semtimedop() function. My current workaround is to read the kernel registers which “carry” the arguments (RDI, RSI, RDX, RCX, R8, R9 for the first 6 arguments in most cases).

Virtual File System (VFS)
The next layer is virtual filesystem. Here we see functions specific to asynchronous IO or synchronous IO, and doing direct IO or not, and also actual filesystem specific functions (in my case xfs, when ext4 is used, you will see specific functions for that. I highly recommend XFS!). This layer also uses a structure called ‘request_queue’, which keeps track of the actual IO requests for a block device, of which each individual request is a struct ‘request’, which contains one or more structs called ‘bio’ which contains a description of the request, which points to structure called ‘bio_vec’, which points to pages for storing the disk request contents. This is all setup and created in kernel memory by the user process in system mode. It’s my assumption that the properties of the disk device (=maximum advertised IO size) are taken into account when the VFS filesystem implementation creates requests and all necessary structs and memory area’s. Please mind it’s important that enough memory is available to setup the necessary structures, and enough CPU to make this happen. Also some of the crucial structures for doing IO (request, bio, bio_vec) seem to be setup in this layer. An IO can’t be done without a memory area for the IO request to hold the data for sending it to the device (alias a write), or a memory area for the IO request to hold the data which is fetched from the device (alias a read).

The funny thing is that when you use ASM (the simple version 11.2 ASM with a local ASM instance and local disk devices), you will still see some functions of the VFS layer, because you use a disk device which is opened using the local filesystem. Examples of these functions are: aio_run_iocb, do_aio_read.

Block Layer
The next layer is the block layer. Here the request queue is handled, and I/O scheduling is done. Oracle advises the deadline scheduler in all cases. The scheduler works by plugging a request queue, much like a plug in your bathtub, letting the requests enter the queue. Having multiple requests in a queue means it can be optimised by reordering the requests, and merging adjacent requests up to the device’s advertised maximum IO size. Once a request’s timeout expires, or the requesting process finishes submitting IO, the queue is unplugged.

SCSI layer
The SCSI layer is responsible for communicating with SCSI devices to do IOs.

Device driver
The device driver layer is the layer that truly physically communicates with a device, and implements the device specific communication. In my case the functions start with mpt, which is the driver for LSI PCI adapters.

To see how the flow of IO going through the block layer, there is a tool called blktrace. Actually this is a mini-suite of tools consisting of blktrace (tracing the IO requests through the block layer), blkparse (parsing the output of blktrace to make it human readable), btrace (script to combine blktrace and blkparse, and btt (a blktrace output post processing tool)), among others.

In order to use blktrace, the debug file system of the Linux kernel needs to be mounted. Here is how that is done:

# mount -t debugfs debugfs /sys/kernel/debug

If the kernel debugfs is not mounted, you get the following message:

[root@bigmachine ~]# btrace /dev/oracleasm/disk1
Invalid debug path /sys/kernel/debug: 0/Success

I use blktrace in this article for looking at the IO requests to understand what is going on. The workflow for this use of blktrace is:
– create a trace file of the block flow using blktrace
– make the trace file human readable via blkparse or analyse via btt (block trace times)

Actually, you can parse the output of blktrace directly via blkparse using ‘blktrace -d DEVICE – | blkparse -i -‘. To make that even simpler, the script ‘btrace’ is created, to do exactly that.

Here’s how that looks like (depending on the number of processes using it, the output can be huge, this is only a snippet):

[root@bigmachine ~]# btrace /dev/oracleasm/disk1
...
  8,16   0       57     0.260669503  2421  Q  WS 4088 + 8 [asm_gmon_+asm]
  8,16   0       58     0.260672502  2421  G  WS 4088 + 8 [asm_gmon_+asm]
  8,16   0       59     0.260673231  2421  P   N [asm_gmon_+asm]
  8,16   0       60     0.260674895  2421  I  WS 4088 + 8 [asm_gmon_+asm]
  8,16   0       61     0.260675745  2421  U   N [asm_gmon_+asm] 1
  8,16   0       62     0.260677119  2421  D  WS 4088 + 8 [asm_gmon_+asm]
  8,16   0       63     0.260882884     0  C  WS 4088 + 8 [0]
...

What is shown here, is the typical flow of an IO in the block layer:
Q – Queue. A request starts off sending a notification on the intent to queue at the given location.
G – Get request. A struct request is allocated.
P – Plug. When the block device queue is empty, the queue is plugged in order to receive further IOs and have the ability to optimise (merge and/or reorder) them before the data is sent to the device.
I – Insert. A request is sent to the IO scheduler for addition to the internal queue and later service by the driver. The request is fully allocated at this time.
U – Unplug. The start of sending requests to the driver.
D – Driver. A request has been sent to the driver and removed from the queue.
C – Complete. A previously issued request to the driver has been completed.

The main point is here, that you can truly see how the IO requests flow through the block layer and are issued to the storage device, in other words, you can see how the block layer receives the IOs, and what is exactly submitted to the driver as request for the physical storage layer.

This is a microscopic view of the disk IOs. In most cases, when you want to gain information on block layer IO processing, another view on it is provided by processing blktrace output with btt. This is an example output of btt:

First capture IO events using blktrace:

[root@bigmachine ~]# blktrace -w 60 -d /dev/oracleasm/disk1 -o - | blkparse -d sdb.blkparse -i -

In this example I captured IOs for 60 seconds. You can exclude ‘-w 60’, and press interrupt (ctrl-c) when you deem IO recording is enough. This produces a binary file ‘sdb.blkparse’, which can be used btt:

This is the first part, the flow through the block layer until IO completion:

==================== All Devices ====================

            ALL           MIN           AVG           MAX           N
--------------- ------------- ------------- ------------- -----------

Q2Q               0.000000001   0.239795347   3.002829973         238
Q2G               0.000000001   0.159337842   3.011192142         264
G2I               0.000000679   0.000001724   0.000011618         264
I2D               0.000000764   0.000007633   0.000153436         264
D2C               0.000000001   0.103328167   3.012509148         233
Q2C               0.000000001   0.270961298   3.012516496         233

Note: time is in milli seconds.
Q2Q – Time between IO requests.
Q2G – Time it takes for a request struct to be allocated.
G2I – Time it takes for the request to be inserted in the device’s queue.
I2D – Time spend in the device queue waiting to be issued to the driver.
D2C – Time spend between issuing to the driver and completion of the request. This includes controller, storage. This is the same figure as the ‘svctm’ column with iostat -x.
Q2C – Total time spend in block layer and physical IO. This is the same figure as the ‘await’ column with iostat -x.

The second part is the device overhead section:

==================== Device Overhead ====================

       DEV |       Q2G       G2I       Q2M       I2D       D2C
---------- | --------- --------- --------- --------- ---------
 (  8, 16) |  66.6284%   0.0007%   0.0000%   0.0032%  38.1339%
---------- | --------- --------- --------- --------- ---------
   Overall |  66.6284%   0.0007%   0.0000%   0.0032%  38.1339%

This is partly the same as the IO flow table above. This is expressed as a percentage of where the total time of the IO is spend.
Q2G – Request struct allocation.
G2I – Insertion in the device queue.
Q2M – Total time until merge.
I2D – Time spend in the queue until it was dispatched to the driver.
D2C – Time spend on doing the IO after submitting the request to the driver.

4 comments
  1. I personally think it causes more problems then it’s worth issuing I/Os against a driver interface that can’t accept the saize the application is issuing. Do you agree? After all, having a db file multiblock read count sized I/O of 32GB issued to, say, a FC HBA that limits request size to 512K means a supposed single I/O call that really boils down to 64 physical requests.

    I always recommend setting MBRC to a size that limits I/O requests to a size one’s FC HBA (or other) can handle. How do you feel about this?

    • JK said:

      c/32GB/32MB

  2. I think the definitive answer is to build a testcase and prove what would be optimal.

    Having said that, I can see how such a huge allocation must mean a lot of work to get the memory allocations done, especially if memory is longer in use and a bit more fragmented.

    The goal of this blogpost is to show what is possible, and do an analysis on the different layers. (of course) this is not an advise to set it that way.

    My intuition says that having the request come in at a maximum size of the advertised maximum size (max_sectors_kb) would be most efficient, if this size is the maximum size of a request throughout the entire IO chain.

  3. Anon said:

    I think Frits is right – you would have to check. If you are submitting I/O down to the block layer in sizes bigger than what will be submitted to the disk you may force the kernel to create parallelism (due to the splitting) in the submitted I/O where you might not have had it. However, if your program is already asynchronously submitting I/O then you didn’t need the force the kernel to create this parallelism as your program could have done it itself. In the later case using the “correct” size saves some overheard of making the kernel do the work (plus if you are using libaio you are less likely to find io_submit() becoming synchronous).

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.